ELSEVIER

Progress in Natural Science 18 (2008) 337-344

Available online at www.sciencedirect.com

ScienceDirect

Progress in
Natural Science

Special report

An effective evolutionary algorithm for the multiple
container packing problem

Sang-Moon Soak ?, Sang-Wook Lee°, Gi-Tae Yeo “*, Moon-Gu Jeon®

* Information Systems Examination Team, Korean Intellectual Property Office (KIPO), Gov. Complex Daejeon Building, 4 920 Dunsandong,
Seogu, Daejeon, Republic of Korea
°School of Information and Mechatronics, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwanju, Republic of Korea
€ College of Humanities and Social Sciences, Woosuk University 490 Hujung-Ri, Samrye-Eup, Wanju-Gun, Jeollabuk-Do, Republic of Korea

Received 29 October 2007; received in revised form 13 November 2007; accepted 13 November 2007

Abstract

This paper focuses on a new optimization problem, which is called “The Multiple Container Packing Problem (MCPP)” and proposes
a new evolutionary approach for it. The proposed evolutionary approach uses “Adaptive Link Adjustment Evolutionary Algorithm
(ALA-EA)” as a basic framework and it incorporates a heuristic local improvement approach into ALA-EA. The first step of the local
search algorithm is to raise empty space through the exchange among the packed items and then to improve the fitness value through
packing unpacked items into the raised empty space. The second step is to exchange the packed items and the unpacked items one
another toward improving the fitness value. The proposed algorithm is compared to the previous evolutionary approaches at the bench-
mark instances (with the same container capacity) and the modified benchmark instances (with different container capacity) and that the
algorithm is proved to be superior to the previous evolutionary approaches in the solution quality.
© 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in

China Press. All rights reserved.

Keywords: ALA-EA; Evolutionary algorithm; Heuristic; The multiple container packing problem

1. Introduction

In this paper, we deal with the problem which was firstly
introduced by Raidl and Kodydek [1] as the multiple con-
tainer packing problem (MCPP). Before Raidl and Kody-
dek, Martello and Toth [2] and Pisinger [3] had dealt
with the same problem, but, they called it as the multiple
knapsack problem (MKP).

The difference between these previous researches is that
Raidl and Kodydek [1] dealt with the problem that the
capacities of containers are all the same, while Martello
and Toth [2] and Pisinger [3] dealt with the problem that
the capacities are all different. Actually, the problems with

* Corresponding author. Tel.: +82 63 290 1420; fax: 482 63 290 9312.
E-mail address: ktyeo@woosuk.ac.kr (G.-T. Yeo).

all different container capacities seem to be much more dif-
ficult than the problem with all the same container capac-
ity. Thus, here, we deal with both types of problems.

As Raidl [4] mentioned, MCPP comprises similarities to
the knapsack problem and the bin packing problem. But,
MCPP has much more difficulty in the context that it must
solve two dependent parts simultaneously: (a) select items
for packing, and (b) distribute chosen items over available
containers. Thus, MCPP also belongs to the family of NP-
hard problems, meaning that it is ever unlikely that we ever
can devise polynomial algorithms to solve it exactly.

Therefore, to use an exact algorithm like a branch and
bound method for solving this problem may require much
computation time. Nevertheless, the branch and bound
methods, which were devised by Martello and Toth [2]
and Pisinger [3], had shown very good performance. Espe-
cially, the MULKNAP algorithm derived by Pisinger out-

1002-0071/$ - see front matter © 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited

and Science in China Press. All rights reserved.
doi:10.1016/j.pnsc.2007.11.007

338 S.-M. Soak et al. | Progress in Natural Science 18 (2008) 337-344

performed the MTM algorithm derived by Martello and
Toth. But, in both researches, they had dealt with only
the instances that many items and small containers exist.
And in Pisinger’s research, the MULKNAP found opti-
mum solutions in almost all instances. That is, the MUL-
KNAP algorithm found the optimum solutions in the
cases with relatively high n/C ratio (where n is the number
of items and C is the number of containers) but at the case
that the ratio was lower, it never found optimum solutions.
More precisely, Pisinger mentioned in his papers [3] as fol-
lows: “A maximum amount of 1 h was given to each algo-
rithm for solving the 10 instances in each class. ... Small
data instances are tested with m = 5 knapsacks, while large
instances have m = 10, as none of the algorithms are able
to solve problems with small values of n/m.” Even though
his branch-and-bound algorithm is able to find globally
optimal solutions for various problems, the performance
is very limited to problems involving many items but only
few containers.

Therefore, at present, to use a heuristic method must be
a more suitable choice in relatively low n/m ratio instances,
and for the problem with many containers because the
problem with small items and many containers can be
solved very easily.

Nevertheless, only three heuristic methods have been
proposed for MCPP [1,4,5]. These algorithms have been
applied to the problems (low n/C ratio) that the previous
branch and bound cannot solve.

The main goal of this paper is to propose a new evolu-
tionary algorithm and to show the performance of the pro-
posed algorithm through the comparison to the previous
heuristic algorithms at the problems with low #/C ratio.

2. The multiple container packing problem

The multiple container packing problem (MCPP) is a
kind of a combinatorial optimization problem which is able
to be applied to several real problems like a truck loading
problem, an airplane luggage packing problem and a liquid
packing problem.

MCPP can be formulated as follows:

C n
Maximize f = Z Z U;X; (1)
i=l j=1
C
Subject to Zx,;,g I, j=1,...,n (2)
i=1
ijx,-,jic,-, l:1,,C (3)
j=1
.xl"j c {07 1}, (4)

where w; > 0, ;> 0, ¢;> 0

Here, w; and v; indicate, respectively, weight and value
of items and ¢; indicates the maximum weight (the con-
tainer capacity) of items to be loaded into container i. If
an item j is to be packed into a container i, x;, is set to 1,

otherwise to 0. The n constraints in (2) ensure that each
item is packed into a single container only and the C con-
straints in (3) guarantee that the total size of all items
packed into each container does not exceed c;.

3. Previous evolutionary approaches

Until now, just three evolutionary algorithms have been
proposed for solving the MCPP: the evolutionary algo-
rithms using the order-based encoding and the direct
encoding derived by Raidl and Kodydek [1] and the evolu-
tionary algorithm using the weight encoding derived by
Raidl [4,5].

In case of EA using the order-based encoding, each solu-
tion is represented as a permutation of items and according
to the order of a permutation, all items are packed into
containers. If an item can be packed in a container, it is
assigned to the container and the next item is considered.
If an item cannot be packed in a container, the item is
stored separately for a local search mechanism and then
the other item is considered. This process is performed until
all items are considered. Once all items are considered, a
packing plan is completed. Thus, using this encoding, EA
can always generate a feasible solution. But, because the
encoding has to keep a form of a permutation, EA cannot
use general evolutionary operators like the one-point or
multi-point crossover and the uniform crossover.

In case of EA using the direct encoding, each solution is
represented as a kind of an array and the index of an array
(locus) corresponds to each item. The gene values indicate
each container numbers. That is, if the value of gene
located in the second index is 1, it can be interpreted as that
item 2 is packed into the container 1. But, this decoding
method can generate infeasible solutions, which violate
the constraint on the maximum capacity c¢; of each con-
tainer. Thus, the EA requires a sort of repair process.
But, the repair process is very simple: if an item violates
the maximum capacity of a container, the item is stored
for a local search like the order-based encoding.

After the above two steps the decoding processes are fin-
ished, which improve the fitness value using a local
improvement algorithm. All previously unassigned items j
are processed in a random order, and each container is
checked in random order if enough space is available to
pack item j. If possible, the item is assigned to the container
and the algorithm keeps proceeding with the next unas-
signed item in the same way. For more details, see Ref. [1].

The EA uses the weight encoding which was derived by
Raidl [4], and he also used weight values (wt;) generated at
random in a specific range [5]. The index of array corre-
sponds to each item and the value indicates the weight val-
ues generated at random. To decode such a chromosome, a
modified problem is generated by adding these weights to
the relative item values r; = v;/w; (v;: absolute item value,
wj: item size).

I’t//-:I’j‘FWl‘j. (5)

S.-M. Soak et al. | Progress in Natural Science 18 (2008) 337-344 339

While item sizes remain unchanged, new absolute item val-
ues are derived as follows:

vy = 1w = v+ wiwt;. (6)

And, Raidl proposed two decoding heuristics: heuristic A4
and heuristic B. First, all items are sorted in ascending or-
der according to the above two values. And then, the heu-
ristic 4 assigns all items to a container according to the
sorting order. If an item cannot be packed into a con-
tainer, then the other container is considered. One con-
tainer after the other is filled by going through all
unpacked items and packing all items not violating the
capacity constraint into the current container. On the
other hand, in case of heuristic B, for one item after
the other, the container where the item fits best is identi-
fied. This is the container where the capacity constraint
would not be violated and the least space would remain
when adding the item. If such a container exists, the item
is packed into it; otherwise, it remains unpacked. These
algorithms have four variants according to the heuristic
methods (4 or B) and the sorting measures (the relative
item values or the new absolute item values). For more
details, refer to [4], [5].

4. New evolutionary algorithm for MCPP
4.1. Adaptive link adjustment-EA: ALA-EA

ALA-EA was derived by Soak [6,7] and it showed very
good performance at the fixed charge transportation prob-
lem and the quadratic minimum spanning-tree problem.

In general, at ALA-EA, all possible edges in network
problems correspond to each gene’s locus and all gene
values are initially set to ‘0’ (see Fig. 1). The gene values
indicate a measure to distinguish between good edges or
bad edges for the problem considered during the entire
evolutionary process. And, it first sorts all genes accord-

Item Container
(O

—

J<

JXi
[ofofo]o]

Fig. 1. Encoding method of ALA-EA. Here, each possible edge is
corresponding to each locus of encoding.

1 2

3
Encoding nnnn

ing to their gene value in ascending order and then each
edge is considered one by one from the gene (edge) with
the lowest gene value to the gene (edge) with the highest
gene value. Because all gene values are all the same at
generation 1, a random sorting mechanism is applied.
After all edges are considered according to the sorted
order, ALA-EA generates a network (phenotype) related
to the problem considered. And then, ALA-EA applies
o and f§ processes to the solutions according to the fitness
value. If the fitness value is better than the current best
solution, then ALA-EA applies o process to genes (edges)
included in the phenotype. Otherwise, f§ process is applied
to all genes in each solution. The f process is controlled
by the 6 value, which controls how many genes (edges)
are selected for f§ process. While o process is a kind of
‘penalty’, and f§ process is a kind of ‘reward’. The reason
why ‘penalty’ is applied to the best current solution is that
if ALA-EA gives ‘reward’ to the best current solution, it
takes no effect to the best current solution and moreover
the population will be filled by the best current solution in
a few generations. Finally, the evolutionary process will
fall into a local optima. On the other hand, if ALA-EA
gives ‘penalty’ to the best current solution, it results in
the competition between the edges, which are included
in the phenotype, and the edges which are not included
in the phenotype.

4.2. Evolutionary operators

4.2.1. Selection strategy

For sampling process during evolution, we use the
real world tournament (RWTS) selection [8]. RWTS
had been tested for several optimization problems and
found to be slightly superior to others overall. Recently,
Lee et al. [9] showed mathematically and empirically
that RWTS has very outstanding features in the points
of the sampling accuracy and the population diversity
preservation.

We here briefly describe RWTS as follows: To generate
an intermediate population, the candidate solutions in
population ¢ are paired according to their population
index number, and the fittest in each pair (breaking ties
randomly) is placed into the intermediate population.
These “winning” candidate solutions are called “level 1”
winners. Next, the level 1 winners are paired (if the num-
ber of winners is an odd number, one candidate among
the other solutions in the population is randomly
selected), and the fittest in each of these pairs (breaking
ties randomly) are termed the “level 2” winners, and cop-
ied into the intermediate population (i.e. additional copies
are included in these candidates). This process continues
until the intermediate population has the same size as
the original population. When, at some level k& and
beyond, there is only ‘winner’ to use, this is always paired
with the index order of the population. When the interme-
diate population is full, genetic operators are applied to it
to produce the next generation.

340 S.-M. Soak et al. | Progress in Natural Science 18 (2008) 337-344

4.2.2. Crossover and mutation operator

Actually, ALA-EA does not have any limitation in using
evolutionary operators. But, for finding more efficient
operators for MCPP, we had tested several operators.

In preliminary experiments, several crossovers (1-point,
2-point and uniform crossover) and mutation operators
(inversion, swap and random perturbation mutation) were
tested. Among them, the uniform crossover with the prob-
ability of 100% and the swap mutation with the probability
of 100% gave better results. So we use them for the new
algorithm in this paper.

4.2.3. New evolutionary algorithm for the MCPP

Because ALA-EA uses all possible edges for an encod-
ing at network problems, for applying it to MCPP we
should be able to encode the problem to satisfy this condi-
tion. Fig. 1 shows the encoding method of ALA-EA for
MCPP. In there, all items are represented as they can be
assigned to each container and all gene values are set to
‘0’ at the initialization process. Therefore, the edge num-
bers correspond to the decision variable x; ;.

For the decoding, ALA-EA first selects the edge e with
the lowest gene value and checks whether the edge e can
be included in the assignment plan. If possible, then the
decision variable x;; of the edge e is set to ‘I’, otherwise
‘0’. And then the edge considered is eliminated from set
A, which indicates the set of all possible edges. This process
is repeated until set 4 empties. Finally, a feasible solution is
generated through this process.

4.2.4. Heuristic local search algorithms
In this subsection, we propose two heuristic local search
methods for improving the solutions found by ALA-EA.

4.2.4.1. Empty space raising heuristic (ESRH). The main
idea of ESRH is to raise the empty space of a specific con-
tainer through the movement of packed items and to pack
the current unpacked items into the raised empty space.
First, we check whether empty space of a specific container
can be increased by moving an item in a container ¢ into a
container b. Here, the important point is that if an item in
the container a can be moved to the container b, other
items in the container « are checked whether they can be
moved into other containers. Once an item in the container
b is moved to other containers, the container b is not con-
sidered for putting items during this process any more.

Through this process, the empty space of a specific con-
tainer should be increased as much as possible. This results
in higher possibility of that an unpacked item can be
packed into the empty space. After that, all unpacked items
are again checked whether they can pack into containers. If
an unpacked item can be packed into the increased empty
space of a container, it is loaded into the container. The
ESRH algorithm is shown below.

for all containers C do
S« VC;
if any item in C; does not move then
for all [in C; do
if I in C; can be moved into C(C, € S) then
Cie= G —{I},C, — G U (I}
S—S-C;
for all unpacked items /; do
if 7, can be packed into C, then
C,— C UL}

I Ttem k, C;: The set of items in container i

4.2.4.2. Exchange heuristic (EH). We propose another heu-
ristic algorithm, the exchange heuristic. This is very simple
and straightforward. The main idea of EH is to check
whether the packed items and the unpacked items are
exchanged with improving of the fitness value. If the
exchange can improve the fitness value, then two items
are exchanged. This process is performed until all
unpacked items are considered. The EH algorithm is
shown below.

for all unpacked items /; do
for all 7, in C; do
if exchange ([, I,) satisfies constraints (2) and (3),
and improves fitness function (1) then
Ci— C—{1},Ci— GU{L};

I Ttem k, C;: The set of items in container i

4.2.4.3. A 2-step heuristic local search algorithm. We
introduce a 2-step heuristic local search algorithm for
improving the feasible solutions generated by decoding
process of ALA-EA. This heuristic algorithm combines
the previous two local search methods: ESRH and
EH.

Fig. 2 depicts the 2-step heuristic local search algorithm.
Here, assume that after the decoding process of ALA-EA,
the empty space of containers 4 and B remains 10 and 5,
respectively, and an item of w; = 10 is packed in the con-
tainer B, and there is unpacked item with w, = 15. Then,
the item of w; =10 can be moved into the container A4
and finally the container A4 is fully packed and the con-
tainer B has empty space 15. Now, we can pack the item
of w, = 15 into the container B. Next, the unpacked items
and the packed items are exchanged at the second heuristic
(EH).

The proposed ALA-EA incorporating with 2-step heu-
ristic algorithm is shown below. Here, we used the same
ALA-EA that was used for the fixed charge transportation
problem and the constrained minimum spanning-tree prob-
lem [6,7]. That is, o and f§ are set to 1, respectively, and 0 is
set to 90%.

1: Initialization
Initialize all gene values g,, =0, C, «— ¢, T — ¢;

S.-M. Soak et al. | Progress in Natural Science 18 (2008) 337-344 341

Unpacked item &

w,=15

Empty space =0

Empty space = 10

Empty space =5

w,=10

Empty space = 15

VV} =10 |Move item j

Container A Container B

: Empty space =0 Empty space = 0 Pack item &
W;=10 W,=15
Container A Container B
Step 1

Container A Container B

Packed items Unpacked items

OO O o

o ~O O

°Q, |0
O O

Exchange packed items and unpacked
items toward improving fitness value
satisfying constraints (2) and (3)

Fig. 2. The 2-step heuristic local search algorithm.

2: Packing plan (decoding) and evaluation
T — ¢, A — E:/*E: all possible edges’s set */
for a =1 to pop_size do
2.1: Packing plan (decoding)
while 4 # {¢} do
Select the gene (edge) b with the lowest gene value;
A—A—{by};
if the edge b satisfies constraints (2) and (3) then
C,«— C,U{L},T+— TU {b}; [* edge b=(1,,C,) */
2.2: 2-step heuristic local search
(Step 1): the empty space raising heuristic
(Step 2): the exchange heuristic
2.3: Evaluation
if best > f; then/* o process */
best — f;;
for j=1to L do
if j € T then
gij— &ij T %
else /* B process */
for j=1to L do
r = random [0,1007];
if (r<0) & & (j € 7)) then
gij<— &ij— P
3: Evolutionary operators
4: Termination condition check

L: The total number of edges, I;: Item k, C;: Container i
g, jth gene in ith solution

5. Experimental comparison
5.1. The problem with the same container capacity

We compare the proposed algorithm to the previous evo-
lutionary approaches, which have been known to give very
good performance at MCPP. For fair comparison, we
applied the proposed algorithm to the benchmark instances
[10] and compared the found results with the results pub-
lished in the previous literature [1,4]. In case of EA using
the weight coding, WEBr showed better performance than
the other variants. Thus, we used the results of WEBr for
comparison. In this experiment, we adopted the same termi-
nation condition which was used in the previous researches:
each run terminated when 200,000 solutions have been eval-
uated without finding a new best solution. The only differ-
ence is that we used the normal replacement strategy
(offsprings replace their parents) instead of the phenotypic
duplicate elimination replacement strategy (only offsprings
different from all others in the population replace the worst
solutions). Therefore, in our experiments, the proposed algo-
rithm had been tested under much a tighter condition and we
cannot expect an advantage of the duplicate elimination
replacement strategy for the proposed algorithm.

All experiments are performed on a personal computer
with Intel Core2 1.83 GHz CPU and 1 Gbyte RAM. Table
1 shows the experimental condition for the implemented
algorithms.

342 S.-M. Soak et al. | Progress in Natural Science 18 (2008) 337-344

Table 1
Experimental condition
Weight coding EA ALA-EA
Population size 100
Initialization Random
Selection Tournament selection RWTS

with replacement
Uniform (60%)
Swap (a probability of 3/n)

Crossover
Mutation

Uniform (100%)
Swap (100%)

Since optimal solution values for these benchmark
instances are not known, we use the percentage difference
(gap) between the total value V of packed items in each solu-
tion and the optimal value V'-” of the LP-relaxed problem
for measuring the quality of a final solution. This upper
bound can be determined for any MCPP by sorting all items
according to their relative values r;and summing up the item
values v; starting with the most valuable item until a total size
C X ¢; is reached. The last item is counted proportionately.
Knowing the LP optimum, the percentage difference is
gap = (VX2 — V) /VEP % 100%. (7)

max max

For each problem instance and the proposed algorithm, 15
independent runs were performed and averaged.

Table 2 shows the experimental results. Here, low values
indicate better results. Comparing the experimental results,

ALA-EA with 2-step shows a better performance than DE,
DEI, OBE and OBEI but worse performance than WEBr.
But, the difference is very small. The maximum difference is
1.32 at 200/60/100 instance and the difference does not
exceed 1 at most other instances. When comparing the
standard deviation, the proposed algorithm seems to give
very stable results at all instances. Here, we want to empha-
size that ALA-EA with 2-step local improvement did not
use ‘the duplicate elimination replacement strategy’. Thus,
when considering the performance gap between WEBr and
ALA-EA with 2-step local improvement, the results should
be interpreted very carefully.

5.2. The problem with different container capacities

In this experiment, we focused on the comparison
between ALA-EA with 2-step and WEBr. We implemented
WEBr following Raidl’s work [4]. The only difference is not
to incorporate with the duplicate elimination replacement
strategy. The reason is that if it can be of help to the
WEBr’s performance, we can expect similar results also
at ALA-EA with 2-step. Thus, for reducing the computa-
tion time and comparing the basic algorithms’ perfor-
mance, we adopted the normal replacement strategy for
two algorithms. We also used the same test data as the pre-
vious instances but each container’s capacity was generated
randomly in the range of [¢; — 25,c;+ 25]. Therefore,

Table 2

Results of the problem with the same container capacity

Problems DE[1] DEI[1] OBE[1] OBEI[1] WEBT([4] ALA-EA with 2-Step

n/Cle; (Average) (Average) (Average) (Average) (Average) (Average) o CPU (s)
30/3/100 2.74 2.74 3.16 2.74 2.74 2.74 0.00 11.76
30/6/100 2.69 2.45 2.82 2.32 2.32 2.48 0.20 37.13
30/9/100 3.31 3.01 3.25 2.90 2.90 2.90 <0.00 43.92
30/12/100 2.48 1.58 1.42 1.05 1.05 1.22 0.18 73.68
50/5/100 2.6 2.58 2.96 2.28 2.08 2.24 0.15 36.47
50/10/100 1.43 1.10 1.73 1.58 0.87 1.12 0.12 106.54
50/15/100 2.53 1.99 2.35 2.00 1.67 1.87 0.16 148.94
50/20/100 2.58 1.5 2.03 1.67 0.94 1.46 0.22 291.80
200/20/100 1.91 1.65 2.84 2.57 1.34 1.64 0.08 1106.54
200/40/100 1.94 1.64 2.52 2.49 1.18 1.64 0.20 5744.78
200/60/100 1.99 1.48 2.10 2.28 0.87 2.19 0.30 12795.14
200/80/100 2.89 2.09 2.36 2.62 1.38 2.56 0.51 16495.39
30/3/200 0.68 0.66 0.96 0.68 0.56 0.58 0.04 13.97
30/3/300 0.50 0.47 0.53 0.44 0.4 0.44 0.01 16.53
30/3/400 0.39 0.37 0.45 0.33 0.26 0.31 0.05 13.75
50/5/200 0.42 0.35 0.88 0.60 0.18 0.4 0.10 53.77
50/5/300 0.51 0.30 0.48 0.70 0.06 0.34 0.07 53.70
50/5/400 0.40 0.39 0.53 0.53 0.17 0.21 0.04 59.85
200/20/200 0.71 0.51 1.26 2.49 0.25 0.50 0.07 2486.59
200/20/300 0.45 0.27 0.76 1.64 0.14 0.29 0.06 3019.12
200/20/400 0.32 0.25 0.41 0.64 0.1 0.27 0.08 2120.83
Total Average 1.59 1.30 1.70 1.64 1.02 1.30

DE and DEI: Direct encoding with and without local improvement.
OBE and OBEI: Order-based encoding with and without local improvement.

S.-M. Soak et al. | Progress in Natural Science 18 (2008) 337-344 343
Table 3
Results of the problem with different container capacity
Problems WEBr 2-step ALA-EA
n/Clc; Best Average Worst 15 CPU (s) Best Average Worst 15 CPU (s)
30/3/diff. 1.72 1.72 1.72 0.00 50 1.72 1.72 1.72 0.00 50
30/6/diff. 0.97 1.19 1.22 0.06 50 0.89 1.21 1.77 0.24 50
30/9/diff. 0.86 1.47 1.73 0.26 50 0.86 1.77 2.80 0.45 50
30/12/diff. 1.40 1.68 1.92 0.17 50 0.95 1.49 2.02 0.41 50
50/5/diff. 1.44 1.52 1.61 0.05 100 1.49 1.81 2.16 0.23 100
50/10/diff. 1.17 1.50 1.83 0.19 100 0.81 1.20 1.68 0.24 100
50/15/diff. 1.42 2.03 2.31 0.24 100 1.43 1.96 2.84 0.36 100
50/20/diff. 1.49 1.65 1.79 0.10 100 0.94 1.23 1.79 0.27 100
200/20/diff. 2.73 291 3.04 0.09 600 1.19 1.64 2.10 0.25 600
200/40/diff. 2.58 2.83 2.98 0.12 600 1.21 1.51 1.98 0.25 600
200/60/diff. 2.27 2.42 2.58 0.09 600 1.34 1.73 1.95 0.18 600
200/80/diff. 1.76 1.89 1.98 0.05 600 1.56 1.99 2.53 0.26 600
30/3/diff. 0.31 0.33 0.98 0.03 50 0.31 0.35 0.42 0.03 50
30/3/diff. 0.46 0.48 0.50 0.02 50 0.46 0.47 0.58 0.03 50
30/3/diff. 0.23 0.23 0.23 0.00 50 0.23 0.24 0.28 0.02 50
50/5/diff. 0.48 0.78 0.95 0.16 100 0.18 0.43 0.61 0.15 100
50/5/diff. 0.23 0.44 0.72 0.14 100 0.23 0.28 0.55 0.10 100
50/5/diff. 0.35 0.39 0.50 0.05 100 0.18 0.30 0.35 0.05 100
200/20/diff. 1.50 1.91 2.02 0.14 600 0.44 0.65 0.89 0.12 600
200/20/diff. 1.17 1.32 1.45 0.08 600 0.24 0.32 0.42 0.05 600
200/20/diff. 0.54 0.65 0.72 0.72 600 0.13 0.20 0.30 0.05 600
Total Average 1.397 1.071

because the V2> value is different from that in the previous
case, we calculated it in the same way that we have
explained in the previous subsection.

Because ALA-EA with 2-step and EA using the weight
encoding have different computation complexity
(O(|n|log|n|) for WEBr and O(|Cn|log|Cn|) for ALA-EA),
it is unfair to use the generation limit for termination as
the previous experiments. So, we adopted a time limit for
the termination condition for much more fair comparison.
And, for both algorithms, 15 independent runs were per-
formed and averaged.

Table 3 shows the experimental results. Comparing
the best results found by two algorithms, ALA-EA with
2-step shows a better performance than WEBr in most
cases. Especially, except 50/5/100 and 50/15/100
instances, the proposed algorithm found superior results
to WEBr. In case of the average results, the proposed
algorithm also shows better performance than WEBr
except small size instances with 30 items. Taking the
results into account, ALA-EA with 2-step seems to be
much effective at relatively bigger size instances with
many items and containers. In case of standard devia-
tion, two algorithms do not exceed 0.5 and show very
stable, but WEBr seems to give more predictable
results.

We simply report statistical result analyzed by t-test.
WE Br was never statistically better than the new algorithm
in these 20 cases except 30/3/diff. Especially except small
instances (item = 30), the new algorithm was found to out-

perform WEBr with confidence at least 99.9% (90% at 200/
80/diff.) in all cases.

6. Conclusion

This paper dealt with the MCPP that relates to how
multiple items can be packed into multiple containers with
the capacity constraint and we proposed a new evolution-
ary algorithm combining ALA-EA and 2-step local
improvement algorithm. For showing the proposed algo-
rithm’s performance, we have tested it at two different
types of problems.

Even though the proposed algorithm has higher compu-
tation complexity than the previous EA using weight
encoding, we could confirm that it can give better perfor-
mance than EA using weight encoding especially for the
problem with different container capacities. Actually, at
real world, the packing process is dealt with enough time
because it is dependent on the shipping plan of a ship.
Thus, the computation time may not be a critical factor
for algorithm development. Anyway, in future work, we
will investigate an algorithm that can reduce the computa-
tion time without the change of performance.

Acknowledgements
This research was financially supported by the UCN

Project, the MIC 21C Frontier R&D Program in Korea,
and the Center for Distributed Sensor Networks at GIST.

344 S.-M. Soak et al. | Progress in Natural Science 18 (2008) 337-344

References

[1] Raidl GR, Kodydek G. Genetic algorithms for the multiple container
packing problem. In: Proceedings of the 5th international conference
on parallel problem solving from nature (PPSN V), LNCS, 1998;1498:
875-884.

[2] Martello S, Toth P. Solution of the zero-one multiple knapsack
problem. Eur J Oper Res 1980;4:276-83.

[3] Pisinger D. An exact algorithm for large multiple knapsack problems.
Eur J Oper Res 1999;114:528-41.

[4] Raidl GR. A weight-coded genetic algorithm for the multiple
container packing problem. In: Proceedings of the 1999 ACM
symposium on applied computing, 1999, p. 291-296.

[5] Raidl GR. The multiple container packing problem: a genetic
algorithm approach with weighted codings. ACM Appl Comp Rev
1999;7(2):22-31.

[6] Soak SM, Corne DW, Ahn BH. A new evolutionary algorithm for
spanning-tree based communication network design. IEICE Trans
Commun 2005;E88-B(10):4090-3.

[7] Soak SM. ‘Adaptive link adjustment’ applied to the fixed charge
transportation problem. IEICE Trans Fundamentals 2007;E90-
A(12):2863-76.

[8] Soak SM, Corne DW, Ahn BH. The edge-window-decoder represen-
tation for tree-based problems. IEEE T Evolut Comput 2006;10(2):
124-44.

[9] Lee S, Soak SM, Park H, et al. Statistical properties analysis of real
world tournament selection in gas. Appl Intell, in press.

[10] Available from: <http://www.apm.tuwien.ac.at/pub/TestProblems/
mcp>.

